Bewertung der EU-Rückstandshöchstgehalte für Pestizide hinsichtlich ihrer Sicherheit für Kinder

Bilanz nach fünf Jahren der Harmonisierung

Bericht im Auftrag von Greenpeace e.V.

Autor:

Lars Neumeister, Pestizidexperte

V.i.S.d.P.:

Christiane Huxdorff, Greenpeace e.V., Große Elbstraße 39, 22767 Hamburg

Korrigierte Fassung vom 30. August 2013

Inhalt

Einleitung	2
Methoden	3
Ergebnisse	
Diskussion	8
Zusammenfassung	8
Literatur	. 10

Einleitung

Mit dem Inkrafttreten der Verordnung 396/2005/EG am 1. September 2008 wurden europaweit Höchstgehalte für Pestizidrückstände in Lebensmitteln harmonisiert. Greenpeace Deutschland und die österreichische Umweltorganisation Global 2000 zeigten, dass viele dieser harmonisierten Höchstgehalte keinen Schutz vor möglichen Gesundheitsgefährdungen, insbesondere für Kinder bieten (Neumeister 2008).

Die Berechnungen, die im Jahr 2008 durchgeführt wurden (Neumeister 2008) ergaben, dass bei über 570 der von der EU erlassenen Höchstgehalte die Akute Referenzdosis (ARfD¹) für Kinder zum Teil massiv überschritten wird, wenn die erlaubte Höchstgehalte zu 100% ausgeschöpft werden. Gemessen an den eigenen Maßstäben der EU-Kommission wurden diese Höchstmengen als "unsicher" eingestuft. Besonders betroffen waren Äpfel, Birnen und Tafeltrauben, bei denen eine Belastung in Höhe der erlaubten Dosis in 8-9% der Fälle möglicherweise schädliche Auswirkungen auf die Gesundheit von Kindern hat.

In den fünf Jahren seit der vollständigen Harmonisierung wurden durch die Höchstgehalte häufig verändert. Greenpeace Deutschland nimmt den fünften Jahrestag der Harmonisierung zum Anlass zu überprüfen, inwiefern unsichere Höchstmengen herabgesetzt und somit sicherer wurden.

Die vorliegende Überprüfung vergleicht die am 1. September 2008 gültigen Höchstgehalte mit denen am 1. August 2013 gültigen. Für diesen Vergleich wird jeweils die Ausschöpfung der akuten Referenzdosis (ARfD) beim Erreichen der gesetzlich erlaubten Höchstgehalte berechnet. Die Berechnungsgrundlagen sind für beide Jahre gleich.

Die jetzt vorliegenden Ergebnisse sind nicht direkt mit denen aus der Berechnung im Jahr 2008 vergleichbar, da zwischenzeitlich mehrere Faktoren (z.B. ARfD-Werte, Verarbeitungsfaktoren) verändert wurden. Deshalb wurde die Berechnung neu durchgeführt, mit gleichen Grundlagen für die Rückstandshöchstgehalte beider Jahre.

⁻

¹ Die akute Referenzdosis (ARfD) ist ein toxikologischer Grenzwert für Pestizide mit einer hohen akuten Giftigkeit. Diese Pestizide können schon bei einmaliger oder kurzzeitiger Aufnahme gesundheitsschädliche Wirkungen auslösen. Die Weltgesundheitsorganisation (WHO) hat die ARfD als diejenige Substanzmenge definiert, die über die Nahrung innerhalb eines Tages oder mit einer Mahlzeit aufgenommen werden kann, ohne dass daraus ein erkennbares Gesundheitsrisiko für den Verbraucher resultiert.

Was sind Rückstandshöchstgehalte und wie werden sie festgelegt?

Rückstandshöchstgehalte sind die erlaubten Konzentrationen von Pestiziden in Lebensmitteln. Sie werden von der EU festgelegt. Die Festsetzung von Höchstmengen für Pestizidrückstände in Lebensmitteln orientiert sich in der Regel an der so genannten "guten fachlichen Praxis". Sie stellen keine toxikologischen Grenzwerte dar.

In der Praxis sieht das so aus: es werden durch den Pestizidhersteller meist in verschiedenen Ländern kontrollierte Feldversuche unternommen. Diese Feldversuche bestehen in einer oder mehreren ordnungsgemäßen und wirksamen Anwendung(en) des Pestizids in der jeweiligen Fruchtart. Wenn die Frucht reif ist, werden auf dem Feld einzelne Proben genommen und zu einer repräsentativen Mischprobe vermischt. Die Rückstände in dieser Mischprobe werden in Untersuchungslaboren bestimmt. Hat der Hersteller z.B. 10 Feldversuche in 10 Ländern durchgeführt ergeben sich 10 unterschiedliche Rückstandergebnisse. Die Unterschiede können, abhängig von Klima und Wetter erheblich sein, aber es wird für die Festsetzung der Höchstmengen der höchste Rückstand (HR) aus allen Versuchen bewertet. Mit diesem höchsten Rückstand wird anhand von Verzehrmengen und verschiedenen Faktoren geprüft, ob eine chronische oder akute Gesundheitsgefährdung für den Verbraucher vorliegt. Liegt keine offensichtliche Gefährdung des Verbrauchers durch den höchsten Rückstand vor, werden verschiedene statistische Verfahren verwendet dessen Ergebnisse zu einem vollen Wert aufgerundet werden. Dieser Wert wird als Höchstmenge vorgeschlagen. So kann aus einem HR von 0,08 mg/kg eine Höchstmenge von 0,2 mg/kg werden – mit der guten fachliche Praxis hat diese 2,5 höhere Höchstmenge dann aber kaum mehr etwas zu tun. Des Weiteren wird die "fertige" Höchstmenge, obwohl sie erheblich höher als ein HR ist, nicht noch einmal auf gesundheitliche Unbedenklichkeit hin überprüft. Dies führt unter Umständen zu Überschreitungen der akuten Referenzdosis (ARfD) für Kinder, wenn eine Höchstmenge erreicht oder überschritten wird.

Sollte ein gemessener höchster Rückstand gesundheitlich bedenklich sein, werden normalerweise die Anwendungen eingeschränkt und/oder die Wartezeiten zwischen Anwendung und Ernte verlängert. Der Hersteller muss in diesen Fällen die Versuche mit den Beschränkungen wiederholen und neue Daten liefern.

Methoden

Die Auswertung erfolgt mit Hilfe relationaler Datenbanken in der alle am 1. September 2008 und am 1. August 2013 gültigen Höchstgehalte (für 2008: 128.324 und für 2013: 143.685²) enthalten sind. Analog zum Vorgehen für die Überprüfung im Jahr 2008 werden die Höchstgehalte als Rückstand in die Formeln für die Berechnung der Ausschöpfung der akuten Referenzdosis eingesetzt³. Die Berechnung und Datengrundlage sind für die Höchstgehalte beider Jahre gleich.

Für die Berechnung der Kurzzeitexposition benötigt man Angaben der verzehrten Mengen jedes Lebensmittels (Verzehrsmengen), die mittleren Gewichte der einzelnen Lebensmittel und bestimmte Variabilitätsfaktoren, die unterschiedliche Belastungssituationen berücksichtigen. Diese Daten wurden vorrangig aus dem PRIMO Modell zur Berechnung der Ausschöpfung der akuten

_

² Beide Zahlen berücksichtigen keine RHG für Gruppen, das es sonst zu Mehrfachzählungen kommt.

³ Eine ausführliche Beschreibung der angewandten Formeln ist in Kapitel "6. Bewertung des gesundheitlichen Risikos durch Pestizidrückstände" (Seite 18 ff.) von Neumeister 2008 zu finden. http://www.greenpeace.de/fileadmin/gpd/user_upload/themen/umweltgifte/EU_Pestizidhoechstmengen270 808_AT.pdf

Referenzdosis der europäischen Behörde für Lebensmittelsicherheit (EFSA) herangezogen (EFSA 2008).

Das Bundesinstitut für Risikobewertung (BfR) veröffentlichte abweichende Variabilitätsfaktoren für einige Wirkstoff-Lebensmittelkombinationen (BfR 2010). Die verwendeten Variabilitätsfaktoren sind in Tabelle 1 dargestellt.

Tabelle 1: Abweichende Variabilitätsfaktoren für einige Wirkstoff-Lebensmittelkombinationen

EU Product Code (396/2005/EC)	Lebensmittel	Wirkstoff	Variabilitäts- faktor
130010	Äpfel	Azinphos-methyl (F)	2,40
130010	Äpfel	Dithianon	2,90
130010	Äpfel	Pyraclostrobin (F)	2,60
130010	Äpfel	Captan	2,70
130010	Äpfel	Fenpyroximate (F)	2,20
151010	Tafeltrauben	Pyraclostrobin (F)	2,30
151020	Keltertrauben	Pyraclostrobin (F)	2,30
Quelle: BfR 2010			

Verarbeitungsfaktoren

Um verarbeitete bzw. geschälte Lebensmittel wie z.B. Zitrusfrüchte, Kartoffeln und Getreide angemessen zu berücksichtigen, wurden Verarbeitungsfaktoren (VF) des BfR aus dem Jahr 2011 verwendet (BfR 2011). Dafür wurden die Lebensmittel- und Pestizidnamen der Nomenklatur der EU Verordnung angeglichen.

Da nicht für alle verarbeiteten bzw. geschälten Lebensmittel Verarbeitungsfaktoren vorliegen, wurde aus den vorhandenen Daten für bestimmte Erzeugnisse bzw. Zubereitungsarten der Mittelwert berechnet. Lagen keine Informationen darüber vor, welche Mengen des jeweiligen Erzeugnisses durch den "EFSA-Vielesser" verzehrt werden, mussten für manche Erzeugnisse Annahmen getroffen werden. So kann sich z.B. der Kartoffelverzehr aus verschiedentlich verarbeiteten Kartoffeln zusammensetzen z.B. als Pommes frites, Kartoffelbrei aus Flocken/Granulat und gekochten Kartoffeln. Je nach Zubereitungsart Rückstände eher anreichern (VF > 1) oder eher verringern (VF < 1) können, für die vorliegende Überprüfung wurde angenommen, dass die meisten Kartoffeln gekocht verzehrt werden und demzufolge wurde der durchschnittliche VF von 0,55 verwendet⁴, wenn keine spezifischer VF vorliegt.

Tabelle 2 stellt die anderen verwendeten mittleren Verarbeitungsfaktoren dar.

⁴ Mittelwerte der Verarbeitungsfaktoren für "Kartoffeln, gekocht"; "Kartoffeln, gekocht (Mikrowelle)" und "Kartoffeln, geschält und gekocht"

Tabelle 2: mittlere Verarbeitungsfaktoren (VF) für zu verarbeitende Lebensmittel

Lebensmittel	Verarbeitetes Erzeugnis	Mittlerer VF
Bananen	Bananenfruchtfleisch	0,52
Kartoffeln	Kartoffeln, gekocht Kartoffeln, gekocht (Mikrowelle) Kartoffeln, geschält und gekocht	0,55
Orangen	Orangenfruchtfleisch Orangen, geschält	0,15
Sonnenblumenkerne	Sonnenblumenöl	0,38
Sojabohne	Sojaöl Sojamilch	0,55
Hirse	Hirsegrieß, Hirsemehl	0,31
Hafer	Haferflocken	0,31
Reis	Reis, gekocht	0,28
Roggen	Roggenmehl, Roggenbrot	1
Weizen	Weizenbrot	0,47
Bohnen	Bohnen, gekocht	0,47
Rapssamen	Rapsöl	1,13
Oliven für die Gewinnung von Öl	Olivenöl	1,96
Tee	Teesud	0,016
Zuckerrüben (Wurzel)	Rübenzucker	0,2
Zuckerrohr	Zucker	0,46

Für manche Lebensmittel, die nur verarbeitet bzw. geschält verzehrt werden, liegen keine Verarbeitungsfaktoren vor. Analog zum Vorgehen im Jahr 2008 wird für diese Lebensmittel ein VF von 0,1 angewandt. Ausnahme ist Kiwi dort wird ein VF von 0,5 angewandt, da es sich um eine sehr dünnschalige Frucht handelt. Die Verwendung eine Standard (default) Verarbeitungsfaktors ist üblich, in einer Untersuchung des holländischen Risikobewertungsinstituts (RIVM) wurden Standardverarbeitungsfaktoren von 0,01-0,04 für bestimmte Verarbeitungsprozesse verwendet (van der Velde-Koerts et al. 2010).

Lagen für manche Kombinationen mehrere Verarbeitungsfaktoren vor (z.b. Aldicarb in Kartoffeln) wurde eine Mittelwert herangezogen.

ARfD Werte

Die ARfD Werte wurden vorranging der EU Online Datenbank (EC 2013) entnommen, Publikationen der EFSA (EFSA 2007, 2008, 2009) und des BfR (2006-2008) wurden verwendet, wenn dort ARfD Werte vorhanden waren, nicht aber in der EU Online Datenbank.

Berechnung

Die Berechnung der Ausschöpfung der ARfD erfolgte nach den Formeln, die auch von der EFSA und dem BfR verwendet werden. Sie werden ausführlich in Neumeister (2008), Banasiak et al. (2005) dokumentiert und an dieser Stelle nicht wiederholt.

Ergebnisse

Berechnet man die Ausschöpfung der akuten Referenzdosis unter Verwendung der am 1. September 2008 gültigen Höchstgehalte als Rückstand, wird bei 429 Höchstgehalten die ARfD für Kinder überschritten. Die gleiche Berechnung mit den am 1. August 2013 gültigen Höchstgehalte ergibt 328 Überschreitungen der ARfD (-24,6%). 124 Höchstgehalte haben sich so verringert, dass beim Erreichen derselben, die ARfD nicht mehr überschritten wird. Bei 16 Wirkstoffen wurden im Laufe der letzten 2 Jahre jedoch 20 HG so hoch gesetzt, dass sie bei einer 100% Ausschöpfung die ARfD überschreiten. Für zwei weitere Wirkstoffe wurden HG neu so hoch gesetzt, daß sie bei voller Ausschöpfung zu drei Überschreitungen der ARfD führen.

Für zwei Wirkstoffe (Bitertanol und Carbofuran) wurden zwischen 2008 und 2013 die ARfD Werte herabgesetzt. Durch die niedrigeren ARfD Werte waren 2008 insgesamt 60 Höchstgehalte nicht sicher für Kleinkinder, 2013 sind es noch 43.

Abbildung 1 zeigt die Pestizide, die bei voller Ausschöpfung der 2008 gültigen Höchstgehalte fünf oder mehr Überschreitungen der ARfD verursacht hätten.

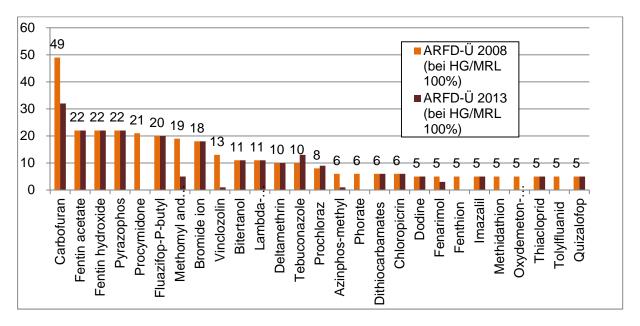


Abbildung 1: Wirkstoffe mit fünf oder mehr unsicheren Höchstgehalten im Jahr 2008 im Vergleich zum Jahr 2013

Insgesamt wurden für 23 Pestizide Höchstgehalte so herabgesetzt, dass sich die Anzahl unsicherer Höchstgehalte verringerte. Für 16 Pestizide wurden Höchstgehalte angehoben und diese führen nun bei voller Ausschöpfung zu einer ARfD Ausschöpfung. Bei den restlichen 42 Pestiziden für die unsichere Höchstgehalte gesetzlich festliegen, hat sich deren Anzahl in den letzten 5 Jahren nicht geändert.

Eine detaillierte Aufstellung findet sich im Anhang 2.

Betrachtet man die einzelnen Lebensmittel zeigt sich, dass die Herabsetzung der Höchstgehalte seit 2008 auf die Anzahl unsicherer Höchstmengen wenig ausgewirkt hat. Für Rückstände in Endivien

(Kraussalat)⁵, Birnen, Äpfeln, Tafeltrauben, Paprika, Tomaten und Aprikosen gelten immer noch ca. 150 Höchstgehalte, die als unsicher zu bewerten sind.

Abbildung 2 zeigt die Lebensmittel, bei denen bei voller Ausschöpfung der 2008 gültigen Höchstgehalte fünf oder mehr Überschreitungen der ARfD vorgekommen wären. Insgesamt gab es 2008 62 Lebensmittel mit unsicheren Höchstgehalten ,2013 sind es 52.

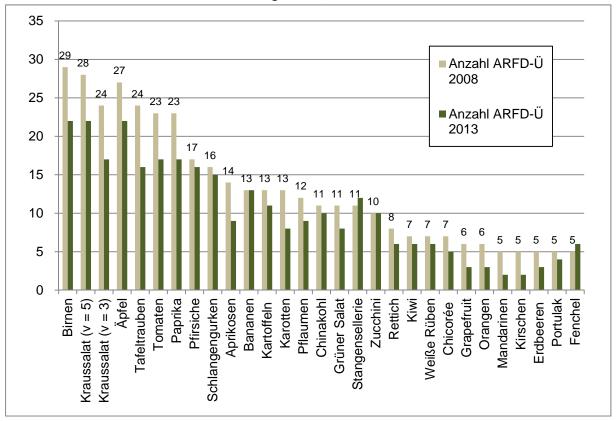


Abbildung 2: Lebensmittel mit fünf oder mehr unsicheren Höchstgehalten im Jahr 2008 und im Vergleich zum Jahr 2013

Eine detaillierte Aufstellung findet sich im Anhang 1.

Im Anhang 3 sind alle unsicheren Höchstgehalte im Vergleich der Jahre aufgeführt. Dort auch zu finden, ist die jeweilige Anzahl der Nachweise eines Pestizids im Jahr 2011 in Lebensmitteln. Für diese Auswertung wurde die Tabelle der nationalen Berichterstattung⁶ ausgewertet. Fast alle Wirkstoffe mit unsicheren Höchstgehalten wurden 2011 in Lebensmitteln nachgewiesen.

 6 http://www.bvl.bund.de/SharedDocs/Downloads/01_Lebensmittel/nbpsm/01_nbpsm_2011/psmr-2011-tab-23-xls.xls?__blob=publicationFile&v=2

⁵ Es wurde mit zwei Variabilitätsfaktoren gerechnet: v= 5 und v = 3, da es Unstimmigkeiten darüber gibt, welche Variabilität korrekt ist.

Diskussion

Der Vergleich der Höchstgehalte und die Berechnung der Ausschöpfung der akuten Referenzdosis unter Anwendung der EFSA bzw. BfR Daten zeigen, dass immer noch eine hohe Anzahl unsicherer Höchstgehalte existiert. Zwar wurden die Höchstgehalte relevanter Pestizide, wie Procymidon und Methomyl herabgesetzt, aber generell sollten alle Höchstgehalte sicher sein – das heißt beim Erreichen derselben, sollte die akute Referenzdosis nicht erreicht werden.

Die offizielle deutsche Risikobewertung vertreten durch das Bundesinstitut für Risikobewertung (BfR) teilt diese Einschätzung nicht (BfR 2009b). Sie ist der Meinung, dass ein im Feldversuch gemessener Rückstand nach einer korrekten Anwendung das wirkliche Risiko widerspiegelt (ebenda) und schlussfolgert daraus, dass die Höchstmenge niemals erreicht werden kann. Selbst wenn es so wäre (dann wäre die staatliche Lebensmittelüberwachung überflüssig), bleibt ein rechtliches Problem bestehen – ein Inverkehrbringer von Lebensmitteln darf die Höchstgehalte zu 100% ausschöpfen und somit ganz legal Lebensmittel verkaufen, die ein potenzielles Risiko darstellen. Das Lebensmittelrecht schließt jedoch *per se* aus, dass Lebensmittel, die ein gesundheitliches Risiko darstellen vermarktet werden.

Eine Untersuchung der niederländischen Risikobewertung (RIVM) zeigte kürzlich (van der Velde-Koerts et al. 2010), dass einige Verzehrsmengen, die die EFSA für die Festlegung der Höchstgehalte heranzog zu niedrig sind – daraus muss geschlussfolgert werden, dass das Ausmaß der "unsicheren Höchstgehalte" größer ist, als hier aufgezeigt.

Auch bei Lebensmitteln, die normalerweise verarbeitet gegessen werden, gibt es unsichere Höchstmengen. Hier kann die Verwendung von Standardwerten zu Überschätzungen aber auch Unterschätzungen kommen. Würde man beispielsweise den Verarbeitungsfaktor von 1,68 (Anreicherung von lambda-Cyhalothrin in gekochtem Spinat) auf alle Pestizide übertragen, gäbe es 10 unsichere Höchstmengen mehr. Die Verarbeitungsfaktoren variieren sehr stark und die Hersteller von Pestiziden müssen dazu mehr Daten liefern, um eine gesichertere Einschätzung zu erlauben.

Insgesamt erscheint das Konzept der Höchstgehalte veraltet und fragwürdig.

Rückstandshöchstgehalte sind keine toxikologischen Grenzwerte, sondern spiegeln die sogenannte "gute fachliche Praxis" wider. Bei der Festlegung wird jedoch die schlechteste "gute fachliche Praxis" herangezogen und mittels Runden und Statistiken weiter verzerrt (siehe Box oben). Weiterhin muss man sich fragen, warum deutsche Behörden Lebensmittel aus dem Ausland auf eine dort stattfindende "gute fachliche Praxis" kontrollieren. Diese "Überwachung" kostet Millionen (Neumeister 2010) führt aber in den wenigsten Fällen zu Sanktionen (Neumeister 2006, 2010).

Zusammenfassung

Die vorliegende Überprüfung vergleicht die am 1. September 2008 gültigen Höchstgehalte mit denen am 1. August 2013 gültigen. Für diesen Vergleich wird jeweils die Ausschöpfung der akuten Referenzdosis (ARfD) beim Erreichen der gesetzlich erlaubten Höchstgehalte berechnet.

Die Berechnung und Datengrundlage sind für die Bewertung der Höchstgehalte beider Jahre gleich. Für die Berechnung der Kurzzeitexposition werden in der Regel die Verzehrsmengen, die mittleren Gewichte der einzelnen Lebensmittel und die Variabilitätsfaktoren die Daten aus dem PRIMO Modell der EFSA verwendet (EFSA 2008).

Berechnet man die Ausschöpfung der akuten Referenzdosis unter Verwendung der am 1. September 2008 gültigen Höchstgehalte als Rückstand, wird bei 4219 Höchstgehalten die ARfD überschritten. Die gleiche Berechnung mit den am 1. August 2013 gültigen Höchstgehalte ergibt 328 Überschreitungen der ARfD. 124 Höchstgehalte haben sich so verringert, dass beim Erreichen derselben, die ARfD nicht mehr überschritten wird, bei 16 Wirkstoffen wurden im Laufe der letzten 5 Jahre jedoch Höchstgehalte so hoch gesetzt, dass sie bei einer 100% Ausschöpfung die ARfD überschreiten.

Betrachtet man die einzelnen Lebensmittel zeigt sich, dass die Herabsetzung der Höchstgehalte seit 2008 auf die Anzahl unsicherer Höchstmengen wenig ausgewirkt hat. Für Rückstände in Endivien⁷, Birnen, Äpfeln, Tafeltrauben, Paprika, Tomaten und Aprikosen gelten immer noch ca. 150 Höchstgehalte, die als unsicher zu bewerten sind.

-

⁷ Es wurde mit zwei Variabilitätsfaktoren gerechnet: v= 5 und v = 3, da es Unstimmigkeiten bezüglich der Variabilitätsfaktoren gibt.

Literatur

Banasiak U, Heseker H, Sieke C, Sommerfeld C & Vohmann C (2005): Abschätzung der Aufnahme von Pflanzenschutzmittel-Rückständen in der Nahrung mit neuen Verzehrsmengen für Kinder, Bundesgesundheitsblatt-Gesundheitsforschung - Gesundheitsschutz 2005 48:84-98, Springer Medizin Verlag

BfR (2006-2008): Grenzwerte für die gesundheitliche Bewertung von Pflanzenschutzmittelrückständen vom Januar 2006, sowie aktualisierte Informationen Nr. 002/2007 und Nr. 003/2008. Bundesinstitut für Risikobewertung (BfR), Berlin

BfR (2009): Greenpeace-Bericht "Die unsicheren Pestizidhöchstmengen in der EU" enthält keine belastbaren Aussagen über mögliche Gesundheitsrisiken von Verbrauchern. Stellungnahme Nr. 040/2008 des BfR vom 26. September 2008. Bundesinstitut für Risikobewertung.

BfR (2010): Variabilitätsfaktoren für die Abschätzung der Kurzzeitexposition von Verbrauchern gegenüber Pflanzenschutzmittelrückständen. Information Nr. 014/2010 des BfR vom 5. März 2010. Bundesinstitut für Risikobewertung (BfR).

BfR (2011): Bundesinstitut für Risikobewertung (BfR). BfR-Datensammlung zu Verarbeitungsfaktoren für Pflanzenschutzmittel-Rückstände Stellungnahme des BfR vom 20. Oktober 2011

EC (2013): Pestiziddatenbank der europäischen Kommission. http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.selection

EFSA (2007): Reasoned opinion on the potential chronic and acute risk to consumers' health arising from proposed temporary EU MRLs – 15/03/2007. Appendix 2. European Food Safety Authority (EFSA)

EFSA (2008): Addendum to the reasoned opinion published on 15 March 2007 on the potential chronic and acute risk to consumers' health arising from proposed temporary EU MRLs according to Regulation (EC) 396/2005 on maximum residue levels of pesticides in food and feed of plant and animal origin. EFSA Scientific Report 132: 1–317. Appendix 4. European Food Safety Authority (EFSA)

EFSA (2008): EFSA model for chronic and acute risk assessment – PRIMO or Revision 2. Excel Datei verfügbar auf der Webseite der EFSA. . European Food Safety Authority (EFSA).

EFSA (2008): EFSA model for chronic and acute risk assessment – PRIMO or Revision 2. Excel Datei verfügbar auf der Webseite der EFSA. . European Food Safety Authority (EFSA).

EFSA (2009): Pesticide toxicological reference values. Datenbankauszug der EFSA vom 09.10.2009, zugesandt auf Anfrage. European Food Safety Agency (EFSA)

Neumeister (2006): Pestizide außer Kontrolle II; Bewertung der Lebensmittelüberwachung in Deutschland zur Pestizidbelastung in pflanzlichen Lebensmitteln 2006, Studie im Auftrag von Greenpeace e.V., Greenpeace Deutschland e.V..

Neumeister L (2008): Die unsicheren Pestizidhöchstmengen in der EU. Überprüfung der harmonisierten EU-Höchstmengen hinsichtlich ihres potenziellen akuten und chronischen Gesundheitsrisikos. Report im Auftrag von Greenpeace e.V. (Hamburg) und GLOBAL 2000 (Wien). Greenpeace e.V. (Hamburg) und GLOBAL 2000 (Wien).

Neumeister L (2010): Millionen für die Überwachung. Die Kosten der Pestizidüberwachung in Deutschland, Studie im Auftrag von Greenpeace e.V., Greenpeace Hamburg.

van der Velde-Koerts T, van Donkersgoed G, Koopman N & Ossendorp BC (2010): Revision of Dutch dietary risk assessment models for pesticide authorisation purposes. RIVM Report 320005006/2010.

Anhang 1 - Lebensmittel mit kritischen Höchstmengen

Annex 1 - Commodities with critical MRLs	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2008	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2013	
Grapefruit Grapefruit (Shaddocks, pomelos, sweeties, tangelo (except	6	3	↓
Orangen Oranges (Bergamot, bitter orange, chinotto and other hybrids)	6	3	ļ
Zitronen Lemons (Citron, lemon)	4		Ţ
Limetten Limes	2		1
Mandarinen Mandarins (Clementine, tangerine, mineola and other hybrids)	5	2	↓
Äpfel Apples (Crab apple)	27	22	1
Birnen Pears (Oriental pear)	29	22	
Mispel Medlar	3	2	Ţ
Aprikosen Apricots	14	9	
Kirschen Cherries (sweet cherries, sour cherries)	5	2	
Pfirsiche Peaches (Nectarines and similar hybrids)	17	16	
Pflaumen Plums (Damson, greengage, mirabelle, sloe)	12	9	
Tafeltrauben Table grapes	24	16	
Keltertrauben Wine grapes	3	1	Ţ
b) Erdbeeren (b) Strawberries	5	3	
Brombeeren Blackberries	2	1	1
Himbeeren Raspberries (Wineberries, arctic bramble/raspberry, (Rubus	1		1
Heidelbeeren Blueberries (Bilberries)		1	1
Johannisbeeren (rot, schwarz und weiß) Currants (red, black and white)	2		
Feigen <i>Figs</i>	1	1	_
Tafeloliven Table olives	1		1
Persimone Persimmon	4	4	_
Kiwi <i>Kiwi</i>	7	6	1
Bananen Bananas (Dwarf banana, plantain, apple banana)	13	13	

Anhang 1 - Lebensmittel mit kritischen Höchstmengen

Annex 1 - Commodities with critical MRLs	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2008	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2013	
Mangos Mangoes	2	1	1
Cherimoya Cherimoya (Custard apple, sugar apple (sweetsop), llama and	1		ļ
Ananas Pineapples	3	2	Ţ
a) Kartoffeln (a) Potatoes	13	11	1
Karotten Carrots	13	8	1
Rettich Radishes (Black radish, Japanese radish, small radish and similar	8	6	Ţ
Weiße Rüben Turnips	7	6	1
Tomaten Tomatoes (Cherry tomatoes, tree tomato, Physalis, gojiberry,	23	17	I .
Paprika Peppers (Chilli peppers)	23	17	↓
Schlangengurken Cucumbers	16	15	1
Gewürzgurken Gherkins	3	2	1
Zucchini Courgettes (Summer squash, marrow (patisson))	10	10	_
Melonen Melons (Kiwano)	2	2	_
Wassermelonen Watermelons	2		1
Chinakohl Chinese cabbage (Indian (Chinese) mustard, pak choi, Chinese flat	11	10	
Feldsalat Lamb's lettuce (Italian cornsalad)	1		1
Grüner Salat Lettuce (Head lettuce, Iollo rosso (cutting lettuce), iceberg lettuce,	11	8	ļ
Kraussalat (Breitblättrige Endivie) Scarole (broad-leaf endive) (Wild chicory, red-leaved chicory,	28	22	1
Salatrauke, Rucola Rocket, Rucola (Wild rocket)	1		
Spinat Spinach (New Zealand spinach, amaranthus spinach)	1	1	_
Portulak Purslane (Winter purslane (miner's lettuce), garden purslane,	5	4	Ţ
e) Chicorée (e) Witloof	7	5	1
Sellerieblätter Celery leaves (Fennel leaves, Coriander leaves, dill leaves,	2	3	1
Erbsen (ohne Hülsen) Peas (without pods) (Garden pea, green pea, chickpea)	1		1

Anhang 1 - Lebensmittel mit kritischen Höchstmengen

Anı	nex 1 - Commodities with critical MRLs	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2008	Anzahl/Number ARfD ≥ 100% (EFSA Model)) 2013	
Star	ngensellerie Celery	11	12	1
Fen	chel Fennel	5	6	1
Kulf	turpilze Cultivated (Common mushroom, Oyster mushroom, Shi-take)	1	1	_
Boh	nnen Beans (Broad beans, navy beans, flageolets, jack beans, lima	2	1	ļ
Erb	sen Peas (Chickpeas, field peas, chickling vetch)	1	1	_
Ses	amsamen Sesame seed	1	1	_
Son	nenblumenkerne Sunflower seed	1	1	_
Rap	essamen Rape seed (Bird rapeseed, turnip rape)	1	1	_
Mais	s Maize	1	1	
Rog	igen Rye	1	1	
Wei	zen Wheat (Spelt, triticale)	1	1	
Кар	oern Capers		1	1
Zuc	kerrüben (Wurzel) Sugar beet (root)	4	2	↓
Zuc	kerrohr Sugar cane	1		1
Zieç	gen Goat	1		1

Anhang 2 - Wirkstoffe mit kritischen Höchstgehalten **Annex 2 - Pesticides with critical MRLs**

Anhang 2 - Wirkstoffe mit kritisch Annex 2 - Pesticides with critical		_	Anzahl/Number ARfD		Maximale	Maximale	Nachweis- häufigkeit 2011	
Wirkstoff	ARfD	≥ 100% (EFSA) 2008	≥ 100% (EFSA) 2013		%ARfD 2008	%ARfD 2013	Nachw häufig	
1. Carbofuran (sum of carbofuran and 3-hydroxy-	0,00015	49	32	1	3.979	6.631	14	
2. Fentin acetate (F) (R)	0,001	22	22	_	490	490	0	
3. Fentin hydroxide (F) (R)	0,001	22	22		490	490	0	
4. Pyrazophos (F)	0,001	22	22	-	490	490	0	
5. Procymidone (R)	0,012	21		1	3.643	8	46	
6. Fluazifop-P-butyl (fluazifop acid (free and	0,01	20	20		380	380	56	
7. Methomyl and Thiodicarb (sum of methomyl and	0,0025	19	5	1	1.076	431	28	
8. Bromide ion	1	18	18		437	437	948	
9. Vinclozolin (sum of vinclozolin and all metabolites	0,06	13	1	1	729	335	7	
10. Bitertanol (F)	0,01	11	11		1.959	1.959	35	
11. Lambda-Cyhalothrin (F) (R)	0,0075	11	11	_	1.166	1.166	382	
12. Deltamethrin (cis-deltamethrin) (F)	0,01	10	10		437	437	99	
13. Tebuconazole	0,03	10	13	1	437	437	507	
14. Prochloraz (sum of prochloraz and its	0,025	8	9	1	1.749	1.749	283	
15. Azinphos-methyl (F)	0,01	6	1	ļ	455	117	9	
16. Phorate (sum of phorate, its oxygen analogue	0,003	6			163	33	4	
17. Dithiocarbamates (dithiocarbamates expressed	0,2	6	6	_	292	292	434	
18. Chloropicrin	0,001	6	6	_	490	490		
19. Dodine	0,1	5	5		490	490	75	
20. Fenarimol	0,02	5	3	1	157	148	14	

ARfD in mg/kg Körpergewicht/body wheight

^{*} Nachweishäufigkeit (aus Nationale Berichterstattung Deutschland 2011)

Anhang 2 - Wirkstoffe mit kritischen Höchstgehalten **Annex 2 - Pesticides with critical MRLs**

Anhang 2 - Wirkstoffe mit kritische Annex 2 - Pesticides with critical Wirkstoff			Anzahl/Number ARfD ≥ 100% (EFSA) 2013		Maximale %ARfD 2008	Maximale %ARfD 2013	Nachweis- häufigkeit 2011	
21. Fenthion (fenthion and its oxigen analogue, their	0,01	5		Ţ	597	10	4	
22. Imazalil	0,05	5	5	-	392	392	1052	
23. Methidathion	0,01	5		Ţ	446	29	57	
24. Oxydemeton-methyl (sum of oxydemeton-methyl	0,0015	5		į	291	65	0	
25. Thiacloprid (F)	0,03	5	5		583	583	703	
26. Tolylfluanid (Sum of tolylfluanid and	0,25	5			699	1	0	
27. Quizalofop, incl. quizalfop-P	0,02	5	5		175	175	8	
28. Chlorfenvinphos (F)	0,01	4			317	20	4	
29. Endosulfan (sum of alpha- and beta-isomers and	0,02	4		į	315	24	102	
30. Ethephon	0,05	4	4		378	124	153	
31. Fenamiphos (sum of fenamiphos and its	0,0025	4	1	Ţ	1.268	101	8	
32. Fenbutatin oxide (F)	0,1	4	5		196	196	129	
33. Methiocarb (sum of methiocarb and methiocarb	0,013	4	4	_	179	179	30	
34. Oxamyl	0,001	4	4		139	139	8	
35. Pirimicarb: sum of pirimicarb and desmethyl	0,1	4	5	1	230	230	8	
36. Acrinathrin (F)	0,01	3	3		217	217	16	
37. Bifenthrin (F)	0,03	3	4	1	583	583	109	
38. Carbaryl (F)	0,01	3		į	453	34	12	
39. Cyromazine	0,1	3	1	j	1.311	431	48	
40. Dithianon	0,12	3	3		228	228	80	

ARfD in mg/kg Körpergewicht/body wheight

^{*} Nachweishäufigkeit (aus Nationale Berichterstattung Deutschland 2011)

Anhang 2 - Wirkstoffe mit kritischen Höchstgehalten Annex 2 - Pesticides with critical MRLs

Wirkstoff	ARfD	Anzahl/Number ARfD ≥ 100% (EFSA) 2008	,		Maximale %ARfD 2008	Maximale %ARfD 2013	Nachweis- häufigkeit 20	
41. Formetanate: Sum of formetanate and its salts	0,005	3	3	_	465	465	16	
42. Tebufenpyrad (F)	0,02	3	3	_	164	164	92	
43. Dinocap (sum of dinocap isomers and their	0,004	3	5	1	122	190	3	
44. Imidacloprid	0,08	3	3	-	130	130	0	
45. Dimethoate (sum of dimethoate and omethoate	0,01	2	1	ļ	192	192	225	
46. Folpet (R)	0,2	2	2	· ·	190	190	32	
47. Guazatine	0,04	2	2	_	249	249		
48. Indoxacarb (sum of indoxacarb and its R	0,125	2	2	-	140	140	266	
49. Methamidophos	0,003	2		Ţ	128	33	8	
50. Propineb (expressed as propilendiamine)	0,1	2	2		117	117		
51. Terbuthylazine	0,008	2	2	-	122	122	45	
52. Abamectin (sum of avermectin B1a,	0,005	2	2	_	175	175	13	
53. Acetamiprid (R)	0,1	1	1	_	437	152	392	
54. Carbendazim and benomyl (sum of benomyl and	0,02	1			145	98	395	
55. Chlorpyrifos (F)	0,1	1	1		130	130	1088	
56. Cyfluthrin (cyfluthrin including other mixtures of	0,02	1	1		437	437	1	
57. Difenoconazole	0,2	1	1	_	115	115	406	
58. Disulfoton (sum of disulfoton, disulfoton sulfoxide	0,003	1			144	72		
59. Flutriafol	0,05	1	1		126	126	147	
60. Glufosinate-ammonium (sum of glufosinate, its	0,021	1	1		659	659		

ARfD in mg/kg Körpergewicht/body wheight

^{*} Nachweishäufigkeit (aus Nationale Berichterstattung Deutschland 2011)

Anhang 2 - Wirkstoffe mit kritischen Höchstgehalten Annex 2 - Pesticides with critical MRLs

Aillien 2 - Festicides With Critical	MIKES						. 2	
Wirkstoff	ARfD	Anzahl/Number ARfD ≥ 100% (EFSA) 2008			Maximale %ARfD 2008	Maximale %ARfD 2013	Nachweis- häufigkeit 3	
61. Pymetrozine	0,1	1	1	_	175	175	44	_
62. Triadimefon and triadimenol (sum of triadimefon	0,08	1	1	-	164	164	160	
63. Flonicamid (sum of flonicamid, TNFG and TNFA)	0,025	1	1		117	117	50	
64. Carbosulfan	0,005	1		ļ	127	40	0	
65. Chlorpropham (chlorpropham and 3-	0,5	1	1		101	101	30	
66. Fenpropimorph (R)	0,03	1	1	_	290	290	6	
67. Malathion (sum of malathion and malaoxon	0,3	1		1	109	18	16	
68. Oxycarboxin	0,01	1		ļ	437	10	1	
69. Spiroxamine (R)	0,1	1	1		130	130	61	
70. Terbufos	0,002	1	1		109	109	0	
71. Ziram	0,08	1	1		114	114		
72. Chlorothalonil (R)	0,6		1		77	153	102	
73. Dimethomorph (sum of isomers)	0,6		1	1	77	115	414	
74. Fenpyroximate (F)	0,02		1	1	98	137	73	
75. Phosmet (phosmet and phosmet oxon expressed	0,045		1	1	75	132	0	
76. Flusilazole (F) (R)	0,005		1		87	237	22	
77. Clothianidin	0,1		1	1	39	175		
78. Spinetoram (XDE-175)	0,1		1	1	33	161	4	
79. Nicotine	0,0008		2	1	0	287	1	

ARfD in mg/kg Körpergewicht/body wheight

^{*} Nachweishäufigkeit (aus Nationale Berichterstattung Deutschland 2011)

Lebens	mittel* LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** A	RfD	bw	IG/MRL 2008	(mg/kg) 2013		RfD 2013	
1 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,00	0015	16,2	0,30	0,01	1784	59	ļ
2 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Fenthion (fenthion and its oxigen		0,01	16,2	3,00	0,01	268	1	1
3 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Guazatine		0,04	16,2	5,00	5,00	112	112	
4 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Methomyl and Thiodicarb (sum of	0,0	0025	16,2	0,50	0,02	178	7	1
5 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Prochloraz (sum of prochloraz and its	0	,025	16,2	10,00	10,00	357	357	_
6 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Tebuconazole		0,03	16,2	0,05	5,00	1	149	1
7 Grapefro	uit 0,36	270,5	5	0,10		Fruchtfleisch	Methidathion		0,01	16,2	5,00	0,02	446	2	1
8 Oranger	0,19	160,0	7	0,15		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,00	0015	8,7	0,30	0,50	3979	6631	1
9 Oranger	0,19	160,0	7	0,15		Fruchtfleisch	Fenthion (fenthion and its oxigen		0,01	8,7	3,00	0,01	597	2	1
10 Oranger	0,19	160,0	7	0,15		Fruchtfleisch	Guazatine		0,04	8,7	5,00	5,00	249	249	_
11 Oranger	0,19	160,0	7	0,15		Fruchtfleisch	Methomyl and Thiodicarb (sum of	0,0	0025	8,7	0,50	0,02	398	16	1
12 Oranger	0,19	160,0	7		0,88	Fruchtfleisch	Dithiocarbamates (dithiocarbamates		0,2	8,7	5,00	5,00	292	292	-
13 Oranger	0,19	160,0	7		0,03	Fruchtfleisch	Methidathion		0,01	8,7	5,00	0,02	199	1	1
14 Zitronen	0,13	71,8	7	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,00	0015	16,2	0,30	0,01	689	23	14
15 Zitronen	0,13	71,8	7	0,10		Fruchtfleisch	Fenthion (fenthion and its oxigen		0,01	16,2	3,00	0,01	103	0	1
16 Zitronen	0,13	71,8	7	0,10		Fruchtfleisch	Methomyl and Thiodicarb (sum of	0,0	0025	16,2	1,00	0,02	138	3	
17 Zitronen	0,13	71,8	7	0,10		Fruchtfleisch	Methidathion		0,01	16,2	5,00	0,02	172	1	1
18 Limetter	0,04	67,0	7	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,00	015	14,5	0,30	0,01	403	13	I.
19 Limetter	0,04	67,0	7	0,10		Fruchtfleisch	Methidathion		0,01	14,5	5,00	0,02	101	0	1
20 Mandari	nen 0,21	100,0	7	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,00	015	14,5	0,30	0,50	1113	1855	1
21 Mandari	nen 0,21	100,0	7	0,10		Fruchtfleisch	Fenthion (fenthion and its oxigen		0,01	14,5	3,00	0,01	167	1	1
22 Mandari	nen 0,21	100,0	7	0,10		Fruchtfleisch	Methomyl and Thiodicarb (sum of	0,0	0025	14,5	1,00	0,02	223	4	
23 Mandari	nen 0,21	100,0	7		0,11	Fruchtfleisch	Prochloraz (sum of prochloraz and its	0	,025	14,5	10,00	10,00	245	245	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v**	ARfD	bw H	1G/MRL 2008	(mg/kg) 2013	% A 2008		
24	Mandarinen	0,21	100,0	7	0,10		Fruchtfleisch	Methidathion		0,01	14,5	5,00	0,02	278	1	Į.
25	Äpfel	0,18	112,0	7				Azinphos-methyl (F)	2,4	0,01	8,7	0,50	0,05	194	19	1
26	Äpfel	0,18	112,0	7				Bitertanol (F)		0,01	8,7	2,00	2,00	1959	1959	_
27	Äpfel	0,18	112,0	7				Bromide ion		1	8,7	20,00	20,00	196	196	
28	Äpfel	0,18	112,0	7				Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,02	0,01	1306	653	1
29	Äpfel	0,18	112,0	7				Deltamethrin (cis-deltamethrin) (F)		0,01	8,7	0,20	0,20	196	196	_
30	Äpfel	0,18	112,0	7				Dithianon	2,9	0,12	8,7	3,00	3,00	113	113	_
31	Äpfel	0,18	112,0	7				Dodine		0,1	8,7	5,00	5,00	490	490	_
32	Äpfel	0,18	112,0	7				Ethephon		0,05	8,7	0,50	0,60	98	118	1
33	Äpfel	0,18	112,0	7				Fenarimol		0,02	8,7	0,30	0,30	147	147	_
34	Äpfel	0,18	112,0	7				Fenbutatin oxide (F)		0,1	8,7	2,00	2,00	196	196	_
35	Äpfel	0,18	112,0	7				Fentin acetate (F) (R)		0,001	8,7	0,05	0,05	490	490	_
36	Äpfel	0,18	112,0	7				Fentin hydroxide (F) (R)		0,001	8,7	0,05	0,05	490	490	_
37	Äpfel	0,18	112,0	7				Fluazifop-P-butyl (fluazifop acid (free		0,01	8,7	0,20	0,20	196	196	_
38	Äpfel	0,18	112,0	7				Imazalil		0,05	8,7	2,00	2,00	392	392	_
39	Äpfel	0,18	112,0	7				Lambda-Cyhalothrin (F) (R)		0,0075	8,7	0,10	0,10	131	131	_
40	Äpfel	0,18	112,0	7				Methomyl and Thiodicarb (sum of		0,0025	8,7	0,20	0,02	784	78	I.
41	Äpfel	0,18	112,0	7				Oxydemeton-methyl (sum of		0,0015	8,7	0,02	0,01	131	65	1
42	Äpfel	0,18	112,0	7				Phorate (sum of phorate, its oxygen		0,003	8,7	0,05	0,01	163	33	1
43	Äpfel	0,18	112,0	7				Pirimicarb: sum of pirimicarb and		0,1	8,7	2,00	2,00	196	196	_
44	Äpfel	0,18	112,0	7				Pyrazophos (F)		0,001	8,7	0,05	0,05	490	490	_
45	Äpfel	0,18	112,0	7				Tebuconazole		0,03	8,7	1,00	1,00	327	327	_
46	Äpfel	0,18	112,0	7				Terbuthylazine		0,008	8,7	0,10	0,10	122	122	

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

Lebensmittel*	LP (kg) U (g)	v defPF PF	Erzeugnis	Wirkstoff	v** ARfD	bw	IG/MRL (2008	mg/kg) 2013	% A 2008		
47 Äpfel	0,18 112,0	7		Tolylfluanid (Sum of tolylfluanid and	0,25	8,7	3,00	0,02	118	1	1
48 Äpfel	0,18 112,0	7		Vinclozolin (sum of vinclozolin and all	0,06	8,7	1,00	0,05	163	8	Į.
49 Äpfel	0,18 112,0	7		Dithiocarbamates (dithiocarbamates	0,2	8,7	5,00	5,00	245	245	_
50 Äpfel	0,18 112,0	7		Chloropicrin	0,001	8,7	0,05	0,05	490	490	_
51 Äpfel	0,18 112,0	7		Dinocap (sum of dinocap isomers and	0,004	8,7	0,05	0,05	122	122	-
52 Äpfel	0,18 112,0	7		Folpet (R)	0,2	8,7	3,00	3,00	147	147	_
53 Birnen	0,23 206,5	7		Azinphos-methyl (F)	0,01	16,2	0,50	0,05	455	46	1
54 Birnen	0,23 206,5	7		Bitertanol (F)	0,01	16,2	2,00	2,00	1821	1821	_
55 Birnen	0,23 206,5	7		Bromide ion	1	16,2	20,00	20,00	182	182	_
56 Birnen	0,23 206,5	7		Carbofuran (sum of carbofuran and 3-	0,00015	16,2	0,02	0,01	1214	607	1
57 Birnen	0,23 206,5	7		Dithianon	0,12	16,2	3,00	3,00	228	228	_
58 Birnen	0,23 206,5	7		Dodine	0,1	16,2	5,00	5,00	455	455	_
59 Birnen	0,23 206,5	7		Endosulfan (sum of alpha- and beta-	0,02	16,2	0,30	0,05	137	23	1
60 Birnen	0,23 206,5	7		Fenarimol	0,02	16,2	0,30	0,30	137	137	_
61 Birnen	0,23 206,5	7		Fenbutatin oxide (F)	0,1	16,2	2,00	2,00	182	182	_
62 Birnen	0,23 206,5	7		Fenpyroximate (F)	0,02	16,2	0,20	0,30	91	137	1
63 Birnen	0,23 206,5	7		Fentin acetate (F) (R)	0,001	16,2	0,05	0,05	455	455	_
64 Birnen	0,23 206,5	7		Fentin hydroxide (F) (R)	0,001	16,2	0,05	0,05	455	455	_
65 Birnen	0,23 206,5	7		Fluazifop-P-butyl (fluazifop acid (free	0,01	16,2	0,20	0,20	182	182	_
66 Birnen	0,23 206,5	7		Imazalil	0,05	16,2	2,00	2,00	364	364	_
67 Birnen	0,23 206,5	7		Lambda-Cyhalothrin (F) (R)	0,0075	16,2	0,10	0,10	121	121	_
68 Birnen	0,23 206,5	7		Methomyl and Thiodicarb (sum of	0,0025	16,2	0,20	0,02	729	73	J.
69 Birnen	0,23 206,5	7		Oxydemeton-methyl (sum of	0,0015	16,2	0,02	0,01	121	61	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD	bw	HG/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
7) Birnen	0,23	206,5	7				Phorate (sum of phorate, its oxygen	0,003	16,2	2 0,05	0,01	152	30	1
7	1 Birnen	0,23	206,5	7				Pirimicarb: sum of pirimicarb and	0,1	16,2	2,00	2,00	182	182	_
7:	2 Birnen	0,23	206,5	7				Pyrazophos (F)	0,001	16,2	2 0,05	0,05	455	455	_
7	3 Birnen	0,23	206,5	7				Tebuconazole	0,03	16,	2 1,00	1,00	304	304	_
74	4 Birnen	0,23	206,5	7				Terbuthylazine	0,008	16,2	2 0,10	0,10	114	114	_
7	5 Birnen	0,23	206,5	7				Tolylfluanid (Sum of tolylfluanid and	0,25	16,2	2 3,00	0,02	109	1	1
7	Birnen	0,23	206,5	7				Vinclozolin (sum of vinclozolin and all	0,06	16,2	2 1,00	0,05	152	8	4
7	7 Birnen	0,23	206,5	7				Ziram	0,08	16,2	2 1,00	1,00	114	114	_
78	Birnen	0,23	206,5	7				Dithiocarbamates (dithiocarbamates	0,2	16,2	2 5,00	5,00	228	228	_
79	9 Birnen	0,23	206,5	7				Chloropicrin	0,001	16,2	2 0,05	0,05	455	455	_
8) Birnen	0,23	206,5	7				Dinocap (sum of dinocap isomers and	0,004	16,2	2 0,05	0,05	114	114	_
8	1 Birnen	0,23	206,5	7				Procymidone (R)	0,012	16,2	2 1,00	0,01	759	8	1
82	2 Birnen	0,23	206,5	7				Folpet (R)	0,2	16,2	2 3,00	3,00	137	137	_
8	3 Mispel	0,12	50,0	7				Bitertanol (F)	0,01	34,	5 2,00	2,00	242	242	_
84	4 Mispel	0,12	50,0	7				Carbofuran (sum of carbofuran and 3-	0,00015	34,	5 0,02	0,01	161	81	1
8	5 Mispel	0,12	50,0	7				Imazalil	0,05	34,	5,00	5,00	121	121	_
8	6 Aprikosen	0,20	50,0	7				Azinphos-methyl (F)	0,01	16,2	2 0,50	0,05	155	15	1
8	7 Aprikosen	0,20	50,0	7				Bitertanol (F)	0,01	16,2	2 1,00	1,00	310	310	_
88	3 Aprikosen	0,20	50,0	7				Carbofuran (sum of carbofuran and 3-	0,00015	16,2	2 0,02	0,01	413	206	1
89	9 Aprikosen	0,20	50,0	7				Dodine	0,1	16,2	2 5,00	5,00	155	155	_
9) Aprikosen	0,20	50,0	7				Fentin acetate (F) (R)	0,001	16,2	2 0,05	0,05	155	155	_
9	1 Aprikosen	0,20	50,0	7				Fentin hydroxide (F) (R)	0,001	16,2	2 0,05	0,05	155	155	
9:	2 Aprikosen	0,20	50,0	7				Fluazifop-P-butyl (fluazifop acid (free	0,01	16,2	2 0,50	0,50	155	155	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	1G/MRL (2008	(mg/kg) 2013		RfD 2013	
93	Aprikosen	0,20	50,0	7				Methamidophos		0,003	16,2	0,10	0,01	103	10	↓
94	Aprikosen	0,20	50,0	7				Methomyl and Thiodicarb (sum of		0,0025	16,2	0,20	0,02	248	25	I.
95	Aprikosen	0,20	50,0	7				Pyrazophos (F)		0,001	16,2	0,05	0,05	155	155	_
96	Aprikosen	0,20	50,0	7				Tebuconazole		0,03	16,2	1,00	1,00	103	103	_
97	Aprikosen	0,20	50,0	7				Vinclozolin (sum of vinclozolin and all		0,06	16,2	2,00	0,05	103	3	1
98	Aprikosen	0,20	50,0	7				Chloropicrin		0,001	16,2	0,05	0,05	155	155	-
99	Aprikosen	0,20	50,0	7				Procymidone (R)		0,012	16,2	2,00	0,01	516	3	1
100	Kirschen	0,27		1				Bitertanol (F)		0,01	22,0	1,00	1,00	122	122	_
101	Kirschen	0,27		1				Carbofuran (sum of carbofuran and 3-		0,00015	22,0	0,02	0,01	163	82	Į.
102	Kirschen	0,27		1				Dimethoate (sum of dimethoate and		0,01	22,0	1,00	0,20	122	24	1
103	Kirschen	0,27		1				Fenthion (fenthion and its oxigen		0,01	22,0	2,00	0,01	245	1	1
104	Kirschen	0,27		1				Tebuconazole		0,03	22,0	5,00	5,00	204	204	_
105	Pfirsiche	0,19	127,6	7				Acrinathrin (F)		0,01	16,2	0,20	0,20	119	119	_
106	Pfirsiche	0,19	127,6	7				Azinphos-methyl (F)		0,01	16,2	0,50	0,05	297	30	1
107	Pfirsiche	0,19	127,6	7				Bitertanol (F)		0,01	16,2	1,00	1,00	593	593	
108	Pfirsiche	0,19	127,6	7				Bromide ion		1	16,2	20,00	20,00	119	119	_
109	Pfirsiche	0,19	127,6	7				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	791	396	1
110	Pfirsiche	0,19	127,6	7				Dodine		0,1	16,2	5,00	5,00	297	297	_
111	Pfirsiche	0,19	127,6	7				Fenarimol		0,02	16,2	0,50	0,50	148	148	_
112	Pfirsiche	0,19	127,6	7				Fentin acetate (F) (R)		0,001	16,2	0,05	0,05	297	297	_
113	Pfirsiche	0,19	127,6	7				Fentin hydroxide (F) (R)		0,001	16,2	0,05	0,05	297	297	_
114	Pfirsiche	0,19	127,6	7				Fluazifop-P-butyl (fluazifop acid (free		0,01	16,2	0,20	0,20	119	119	_
115	Pfirsiche	0,19	127,6	7				Flusilazole (F) (R)		0,005	16,2	0,05	0,20	59	237	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	1G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
116	Pfirsiche	0,19	127,6	7				Lambda-Cyhalothrin (F) (R)		0,0075	16,2	0,20	0,20	158	158	_
117	Pfirsiche	0,19	127,6	7				Methomyl and Thiodicarb (sum of		0,0025	16,2	0,20	0,02	475	47	1
118	Pfirsiche	0,19	127,6	7				Phosmet (phosmet and phosmet oxon		0,045	16,2	0,05	1,00	7	132	1
119	Pfirsiche	0,19	127,6	7				Pirimicarb: sum of pirimicarb and		0,1	16,2	2,00	2,00	119	119	_
120	Pfirsiche	0,19	127,6	7				Pyrazophos (F)		0,001	16,2	0,05	0,05	297	297	_
121	Pfirsiche	0,19	127,6	7				Tebuconazole		0,03	16,2	1,00	1,00	198	198	_
122	Pfirsiche	0,19	127,6	7				Chloropicrin		0,001	16,2	0,05	0,05	297	297	_
123	Pfirsiche	0,19	127,6	7				Procymidone (R)		0,012	16,2	2,00	0,01	989	5	1
124	Pflaumen	0,24	53,3	7				Azinphos-methyl (F)		0,01	17,1	0,50	0,05	165	16	1
125	Pflaumen	0,24	53,3	7				Bitertanol (F)		0,01	17,1	2,00	2,00	658	658	
126	Pflaumen	0,24	53,3	7				Carbofuran (sum of carbofuran and 3-		0,00015	17,1	0,02	0,01	439	219	1
127	Pflaumen	0,24	53,3	7				Dodine		0,1	17,1	5,00	5,00	165	165	_
128	Pflaumen	0,24	53,3	7				Fentin acetate (F) (R)		0,001	17,1	0,05	0,05	165	165	_
129	Pflaumen	0,24	53,3	7				Fentin hydroxide (F) (R)		0,001	17,1	0,05	0,05	165	165	_
130	Pflaumen	0,24	53,3	7				Fluazifop-P-butyl (fluazifop acid (free		0,01	17,1	0,50	0,50	165	165	_
131	Pflaumen	0,24	53,3	7				Methomyl and Thiodicarb (sum of		0,0025	17,1	0,50	0,02	658	26	1
132	Pflaumen	0,24	53,3	7				Pyrazophos (F)		0,001	17,1	0,05	0,05	165	165	_
133	Pflaumen	0,24	53,3	7				Tebuconazole		0,03	17,1	0,50	1,00	55	110	1
134	Pflaumen	0,24	53,3	7				Vinclozolin (sum of vinclozolin and all		0,06	17,1	2,00	0,05	110	3	1
135	Pflaumen	0,24	53,3	7				Chloropicrin		0,001	17,1	0,05	0,05	165	165	_
136	Pflaumen	0,24	53,3	7				Procymidone (R)		0,012	17,1	2,00	0,01	549	3	I.
137	Tafeltrauben	0,21	581,5	5				Bromide ion		1	16,2	20,00	20,00	131	131	
138	Tafeltrauben	0,21	581,5	5				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	873	437	111

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

Lebensm	ittel* LP (kg)) U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD		HG/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
139 Tafeltraub	en 0,21	581,5	5				Deltamethrin (cis-deltamethrin) (F)	0,0	16,2	0,20	0,20	131	131	_
140 Tafeltraub	en 0,21	581,5	5				Dithianon	0,1	16,2	3,00	3,00	164	164	_
141 Tafeltraub	en 0,21	581,5	5				Endosulfan (sum of alpha- and beta-	0,0	16,2	0,50	0,05	164	16	1
142 Tafeltraub	en 0,21	581,5	5				Ethephon	0,0	16,2	1,00	0,70	131	92	1
143 Tafeltraub	en 0,21	581,5	5				Fenbutatin oxide (F)	0,	16,2	2,00	2,00	131	131	_
144 Tafeltraub	en 0,21	581,5	5				Fentin acetate (F) (R)	0,00	16,2	0,05	0,05	327	327	_
145 Tafeltraub	en 0,21	581,5	5				Fentin hydroxide (F) (R)	0,00	16,2	0,05	0,05	327	327	_
146 Tafeltraub	en 0,21	581,5	5				Fluazifop-P-butyl (fluazifop acid (free	0,0	16,2	0,20	0,20	131	131	_
147 Tafeltraub	en 0,21	581,5	5				Lambda-Cyhalothrin (F) (R)	0,007	16,2	0,20	0,20	175	175	_
148 Tafeltraub	en 0,21	581,5	5				Malathion (sum of malathion and	0,3	16,2	5,00	0,02	109	0	1
149 Tafeltraub	en 0,21	581,5	5				Methiocarb (sum of methiocarb and	0,013	16,2	0,30	0,30	151	151	_
150 Tafeltraub	en 0,21	581,5	5				Methomyl and Thiodicarb (sum of	0,002	16,2	0,05	0,02	131	52	1
151 Tafeltraub	en 0,21	581,5	5				Phorate (sum of phorate, its oxygen	0,003	16,2	0,05	0,01	109	22	1
152 Tafeltraub	en 0,21	581,5	5				Pyrazophos (F)	0,00	16,2	0,05	0,05	327	327	_
153 Tafeltraub	en 0,21	581,5	5				Tebuconazole	0,0	16,2	2,00	2,00	437	437	_
154 Tafeltraub	en 0,21	581,5	5				Tebufenpyrad (F)	0,0	16,2	0,50	0,50	164	164	-
155 Tafeltraub	en 0,21	581,5	5				Tolylfluanid (Sum of tolylfluanid and	0,2	16,2	5,00	0,02	131	1	1
156 Tafeltraub	en 0,21	581,5	5				Triadimefon and triadimenol (sum of	0,0	16,2	2,00	2,00	164	164	_
157 Tafeltraub	en 0,21	581,5	5				Vinclozolin (sum of vinclozolin and all	0,0	16,2	5,00	0,05	546	5	1
158 Tafeltraub	en 0,21	581,5	5				Dithiocarbamates (dithiocarbamates	0,2	16,2	5,00	5,00	164	164	_
159 Tafeltraub	en 0,21	581,5	5				Procymidone (R)	0,012	16,2	5,00	0,01	2728	5	1
160 Tafeltraub	en 0,21	581,5	5				Indoxacarb (sum of indoxacarb and its	0,12	16,2	2,00	2,00	105	105	_
161 Keltertrau	ben 0,07		1				Carbofuran (sum of carbofuran and 3-	0,0001	8,7	0,02	0,01	104	52	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw H	1G/MRL 2008	(mg/kg) 2013		RfD 2013	
162	Keltertrauben	0,07	(0)	1		0,71		Methomyl and Thiodicarb (sum of		0,0025	8,7	1,00	0,50	221	110	Į.
163	Keltertrauben	0,07		1				Procymidone (R)		0,012	8,7	5,00	0,01	324	1	1
164	b) Erdbeeren	0,25		1				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	208	104	1
165	b) Erdbeeren	0,25		1				Lambda-Cyhalothrin (F) (R)		0,0075	16,2	0,50	0,50	104	104	_
166	b) Erdbeeren	0,25		1				Methiocarb (sum of methiocarb and		0,013	16,2	1,00	1,00	120	120	_
167	b) Erdbeeren	0,25		1				Vinclozolin (sum of vinclozolin and all		0,06	16,2	5,00	0,05	130	1	1
168	b) Erdbeeren	0,25		1				Procymidone (R)		0,012	16,2	5,00	0,01	650	1	
169	Brombeeren	0,16		1				Carbofuran (sum of carbofuran and 3-		0,00015	14,5	0,02	0,01	143	71	1
170	Brombeeren	0,16		1				Thiacloprid (F)		0,03	14,5	3,00	3,00	107	107	_
171	Himbeeren	0,09		1				Procymidone (R)		0,012	16,2	10,00	0,01	467	0	1
172	Heidelbeeren	0,05		1				Ethephon		0,05	16,2	0,05	20,00	0	124	1
173	Johannisbeeren (rot,	0,15		1				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	124	62	1
174	Johannisbeeren (rot,	0,15		1				Vinclozolin (sum of vinclozolin and all		0,06	16,2	10,00	0,05	155	1	4
175	Feigen	0,04	55,0	7				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	212	106	
176	Tafeloliven	0,06		1				Carbaryl (F)		0,01	17,8	5,00	0,01	169	0	1
177	Persimone	0,09	136,0	7				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	532	266	1
178	Persimone	0,09	136,0	7				Fentin acetate (F) (R)		0,001	16,2	0,05	0,05	199	199	_
179	Persimone	0,09	136,0	7				Fentin hydroxide (F) (R)		0,001	16,2	0,05	0,05	199	199	_
180	Persimone	0,09	136,0	7				Pyrazophos (F)		0,001	16,2	0,05	0,05	199	199	_
181	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Bromide ion		1	16,2	50,00	50,00	101	101	_
182	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	268	134	1
183	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Fentin acetate (F) (R)		0,001	16,2	0,05	0,05	101	101	_
184	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Fentin hydroxide (F) (R)		0,001	16,2	0,05	0,05	101	101	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** AF	RfD	H bw	G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
185	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Pyrazophos (F)	0,0	001	16,2	0,05	0,05	101	101	_
186	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Vinclozolin (sum of vinclozolin and all	0	,06	16,2	10,00	10,00	335	335	_
187	Kiwi	0,20	75,0	7	0,50		Fruchtfleisch	Procymidone (R)	0,0	012	16,2	5,00	0,01	838	2	1
188	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Acrinathrin (F)	0	,01	8,7	0,50	0,50	217	217	_
189	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Bitertanol (F)	0	,01	8,7	3,00	3,00	1304	1304	_
190	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Bromide ion		1	8,7	50,00	50,00	217	217	_
191	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,000	015	8,7	0,02	0,01	580	290	1
192	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Chlorpyrifos (F)		0,1	8,7	3,00	3,00	130	130	_
193	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Fenbutatin oxide (F)		0,1	8,7	3,00	3,00	130	130	_
194	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Fenpropimorph (R)	0	,03	8,7	2,00	2,00	290	290	_
195	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Fentin acetate (F) (R)	0,0	001	8,7	0,05	0,05	217	217	_
196	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Fentin hydroxide (F) (R)	0,0	001	8,7	0,05	0,05	217	217	-
197	Bananen	0,13	100,0	7		0,52	? Fruchtfleisch	lmazalil	0	,05	8,7	2,00	2,00	174	174	_
198	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Pyrazophos (F)	0,0	001	8,7	0,05	0,05	217	217	_
199	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Spiroxamine (R)		0,1	8,7	3,00	3,00	130	130	_
200	Bananen	0,13	100,0	7	0,52		Fruchtfleisch	Terbufos	0,0	002	8,7	0,05	0,05	109	109	_
201	Mangos	0,20	204,0	7	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,000	015	17,8	0,02	0,01	105	52	1
202	Mangos	0,20	204,0	7	0,10		Fruchtfleisch	Prochloraz (sum of prochloraz and its	0,0	025	17,8	5,00	5,00	157	157	_
203	Cherimoya	0,10	50,0	7				Carbofuran (sum of carbofuran and 3-	0,000	015	34,5	0,02	0,01	156	78	1
204	Ananas	0,41	1600,0	5	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-	0,000	015	20,5	0,02	0,01	135	67	1.0
205	Ananas	0,41	1600,0	5		0,25	Fruchtfleisch	Ethephon	0	,05	20,5	2,00	2,00	101	101	_
206	Ananas	0,41	1600,0	5	0,10		Fruchtfleisch	Prochloraz (sum of prochloraz and its	0,0	025	20,5	5,00	5,00	202	202	_
207	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Bromide ion		1	8,7	50,00	50,00	384	384	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v**	ARfD	bw H	IG/MRL 2008	(mg/kg) 2013		RfD 2013	
208	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,02	0,01	1025	513	1
209	a) Kartoffeln	0,19	216,0	7		0,33	gekocht	Chlorpropham (chlorpropham and 3-		0,5	8,7	10,00	10,00	101	101	
210	a) Kartoffeln	0,19	216,0	7		2,80	gekocht	Cyromazine		0,1	8,7	1,00	1,00	431	431	_
211	a) Kartoffeln	0,19	216,0	7		1,40	gekocht	Disulfoton (sum of disulfoton, disulfoton		0,003	8,7	0,02	0,01	144	72	↓
212	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Fentin acetate (F) (R)		0,001	8,7	0,05	0,05	384	384	_
213	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Fentin hydroxide (F) (R)		0,001	8,7	0,05	0,05	384	384	
214	a) Kartoffeln	0,19	216,0	7		3,00	gekocht	Glufosinate-ammonium (sum of		0,021	8,7	0,30	0,30	659	659	_
215	a) Kartoffeln	0,19	216,0	7		0,14	gekocht	Imazalil		0,05	8,7	3,00	3,00	129	129	_
216	a) Kartoffeln	0,19	216,0	7		1,35	gekocht	Imidacloprid		0,08	8,7	0,50	0,50	130	130	_
217	a) Kartoffeln	0,19	216,0	7		3,50	gekocht	Methomyl and Thiodicarb (sum of		0,0025	8,7	0,05	0,02	1076	431	
218	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Oxydemeton-methyl (sum of		0,0015	8,7	0,02	0,01	103	51	1
219	a) Kartoffeln	0,19	216,0	7	0,50		gekocht	Pyrazophos (F)		0,001	8,7	0,05	0,05	384	384	_
220	Karotten	0,08	80,0	7				Bromide ion		1	8,7	50,00	50,00	317	317	_
221	Karotten	0,08	80,0	7				Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,02	0,01	845	423	
222	Karotten	0,08	80,0	7				Carbosulfan		0,005	8,7	0,10	0,01	127	13	1
223	Karotten	0,08	80,0	7				Chlorfenvinphos (F)		0,01	8,7	0,50	0,02	317	13	1
224	Karotten	0,08	80,0	7				Fenamiphos (sum of fenamiphos and its		0,0025	8,7	0,50	0,02	1268	51	Į.
225	Karotten	0,08	80,0	7				Fentin acetate (F) (R)		0,001	8,7	0,05	0,05	317	317	_
226	Karotten	0,08	80,0	7				Fentin hydroxide (F) (R)		0,001	8,7	0,05	0,05	317	317	_
227	Karotten	0,08	80,0	7				Fluazifop-P-butyl (fluazifop acid (free		0,01	8,7	0,30	0,30	190	190	_
228	Karotten	0,08	80,0	7				Methomyl and Thiodicarb (sum of		0,0025	8,7	0,05	0,02	127	51	1
229	Karotten	0,08	80,0	7				Phorate (sum of phorate, its oxygen		0,003	8,7	0,05	0,01	106	21	1
230	Karotten	0,08	80,0	7				Pyrazophos (F)		0,001	8,7	0,05	0,05	317	317	_
1																

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)
U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

Lebensmittel*	LP (kg) U (g)	v def	PF PF	Erzeugnis	Wirkstoff	v** ARfD	bw	IG/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
231 Karotten	0,08 80,0	7			Quizalofop, incl. quizalfop-P	0,02	8,7	0,40	0,40	127	127	_
232 Karotten	0,08 80,0	7			Tebuconazole	0,03	8,7	0,50	0,50	106	106	_
233 Rettich	0,05 180,0	7			Bromide ion	1	14,5	50,00	50,00	110	110	_
234 Rettich	0,05 180,0	7			Carbofuran (sum of carbofuran and 3-	0,00015	14,5	0,02	0,01	292	146	1
235 Rettich	0,05 180,0	7			Chlorfenvinphos (F)	0,01	14,5	0,50	0,02	110	4	1
236 Rettich	0,05 180,0	7			Fentin acetate (F) (R)	0,001	14,5	0,05	0,05	110	110	_
237 Rettich	0,05 180,0	7			Fentin hydroxide (F) (R)	0,001	14,5	0,05	0,05	110	110	_
238 Rettich	0,05 180,0	7			Fluazifop-P-butyl (fluazifop acid (free	0,01	14,5	0,50	0,50	110	110	_
239 Rettich	0,05 180,0	7			Methomyl and Thiodicarb (sum of	0,0025	14,5	0,50	0,02	438	18	1
240 Rettich	0,05 180,0	7			Pyrazophos (F)	0,001	14,5	0,05	0,05	110	110	_
241 Weiße Rüben	0,11 110,0	7			Bromide ion	1	20,5	50,00	50,00	180	180	_
242 Weiße Rüben	0,11 110,0	7			Carbofuran (sum of carbofuran and 3-	0,00015	20,5	0,02	0,01	479	239	
243 Weiße Rüben	0,11 110,0	7			Chlorfenvinphos (F)	0,01	20,5	0,50	0,02	180	7	1
244 Weiße Rüben	0,11 110,0	7			Fentin acetate (F) (R)	0,001	20,5	0,05	0,05	180	180	_
245 Weiße Rüben	0,11 110,0	7			Fentin hydroxide (F) (R)	0,001	20,5	0,05	0,05	180	180	_
246 Weiße Rüben	0,11 110,0	7			Fluazifop-P-butyl (fluazifop acid (free	0,01	20,5	0,50	0,50	180	180	_
247 Weiße Rüben	0,11 110,0	7			Pyrazophos (F)	0,001	20,5	0,05	0,05	180	180	_
248 Tomaten	0,18 142,5	7			Bitertanol (F)	0,01	17,8	3,00	3,00	1744	1744	_
249 Tomaten	0,18 142,5	7			Bromide ion	1	17,8	50,00	50,00	291	291	_
250 Tomaten	0,18 142,5	7			Carbaryl (F)	0,01	17,8	0,50	0,01	291	6	Į.
251 Tomaten	0,18 142,5	7			Carbendazim and benomyl (sum of	0,02	17,8	0,50	0,30	145	87	1
252 Tomaten	0,18 142,5	7			Carbofuran (sum of carbofuran and 3-	0,00015	17,8	0,02	0,01	775	388	
253 Tomaten	0,18 142,5	7			Deltamethrin (cis-deltamethrin) (F)	0,01	17,8	0,30	0,30	174	174	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	1G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
254	Tomaten	0,18	142,5	7				Endosulfan (sum of alpha- and beta-		0,02	17,8	0,50	0,05	145	15	1
255	Tomaten	0,18	142,5	7				Ethephon		0,05	17,8	1,00	1,00	116	116	_
256	Tomaten	0,18	142,5	7				Fenamiphos (sum of fenamiphos and its		0,0025	17,8	0,05	0,04	116	93	Î
257	Tomaten	0,18	142,5	7				Fenarimol		0,02	17,8	0,50	0,02	145	6	1
258	Tomaten	0,18	142,5	7				Fenbutatin oxide (F)		0,1	17,8	1,00	2,00	58	116	1
259	Tomaten	0,18	142,5	7				Fentin acetate (F) (R)		0,001	17,8	0,05	0,05	291	291	_
260	Tomaten	0,18	142,5	7				Fentin hydroxide (F) (R)		0,001	17,8	0,05	0,05	291	291	_
261	Tomaten	0,18	142,5	7				Fluazifop-P-butyl (fluazifop acid (free		0,01	17,8	0,30	0,30	174	174	_
262	Tomaten	0,18	142,5	7				Formetanate: Sum of formetanate and		0,005	17,8	0,20	0,20	233	233	_
263	Tomaten	0,18	142,5	7				Methomyl and Thiodicarb (sum of		0,0025	17,8	0,20	0,02	465	47	1
264	Tomaten	0,18	142,5	7				Oxamyl		0,001	17,8	0,02	0,02	116	116	_
265	Tomaten	0,18	142,5	7				Propineb (expressed as		0,1	17,8	2,00	2,00	116	116	_
266	Tomaten	0,18	142,5	7				Pyrazophos (F)		0,001	17,8	0,05	0,05	291	291	_
267	Tomaten	0,18	142,5	7				Quizalofop, incl. quizalfop-P		0,02	17,8	0,40	0,40	116	116	_
268	Tomaten	0,18	142,5	7				Tebuconazole		0,03	17,8	1,00	1,00	194	194	_
269	Tomaten	0,18	142,5	7				Tebufenpyrad (F)		0,02	17,8	0,50	0,50	145	145	_
270	Tomaten	0,18	142,5	7				Chloropicrin		0,001	17,8	0,05	0,05	291	291	_
271	Tomaten	0,18	142,5	7				Procymidone (R)		0,012	17,8	2,00	0,01	969	5	1
272	Paprika	0,15	154,9	7				Acrinathrin (F)		0,01	16,2	0,20	0,20	126	126	_
273	Paprika	0,15	154,9	7				Bifenthrin (F)		0,03	16,2	0,20	0,50	42	105	1
274	Paprika	0,15	154,9	7				Bromide ion		1	16,2	30,00	30,00	189	189	_
275	Paprika	0,15	154,9	7				Carbofuran (sum of carbofuran and 3-	(,00015	16,2	0,02	0,01	840	420	1
276	Paprika	0,15	154,9	7				Deltamethrin (cis-deltamethrin) (F)		0,01	16,2	0,20	0,20	126	126	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD	bw	HG/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
277	Paprika	0,15	154,9	7				Endosulfan (sum of alpha- and beta-	0,02	16,2	1,00	0,05	315	16	ı
278	Paprika	0,15	154,9	7				Ethephon	0,05	16,2	3,00	0,05	378	6	
279	Paprika	0,15	154,9	7				Fenamiphos (sum of fenamiphos and its	0,0025	16,2	0,10	0,04	252	101	1
280	Paprika	0,15	154,9	7				Fenarimol	0,02	16,2	0,50	0,02	157	6	1
281	Paprika	0,15	154,9	7				Fentin acetate (F) (R)	0,001	16,2	0,05	0,05	315	315	-
282	Paprika	0,15	154,9	7				Fentin hydroxide (F) (R)	0,001	16,2	0,05	0,05	315	315	_
283	Paprika	0,15	154,9	7				Fluazifop-P-butyl (fluazifop acid (free	0,01	16,2	0,50	0,50	315	315	_
284	Paprika	0,15	154,9	7				Flutriafol	0,05	16,2	1,00	1,00	126	126	_
285	Paprika	0,15	154,9	7				Methomyl and Thiodicarb (sum of	0,0025	16,2	0,20	0,02	504	50	1
286	Paprika	0,15	154,9	7				Oxamyl	0,001	16,2	0,02	0,02	126	126	_
287	Paprika	0,15	154,9	7				Phorate (sum of phorate, its oxygen	0,003	16,2	0,05	0,01	105	21	1
288	Paprika	0,15	154,9	7				Pyrazophos (F)	0,001	16,2	0,05	0,05	315	315	_
289	Paprika	0,15	154,9	7				Quizalofop, incl. quizalfop-P	0,02	16,2	0,40	0,40	126	126	_
290	Paprika	0,15	154,9	7				Tebuconazole	0,03	16,2	0,50	0,50	105	105	_
291	Paprika	0,15	154,9	7				Tebufenpyrad (F)	0,02	16,2	0,50	0,50	157	157	_
292	Paprika	0,15	154,9	7				Thiacloprid (F)	0,03	16,2	1,00	1,00	210	210	_
293	Paprika	0,15	154,9	7				Vinclozolin (sum of vinclozolin and all	0,06	16,2	3,00	0,05	315	5	1
294	Paprika	0,15	154,9	7				Dithiocarbamates (dithiocarbamates	0,2	16,2	5,00	5,00	157	157	_
295	Paprika	0,15	154,9	7				Procymidone (R)	0,012	16,2	2,00	0,01	1050	5	1
296	Schlangengurken	0,20	411,4	5				Azinphos-methyl (F)	0,01	17,1	0,20	0,20	117	117	_
297	Schlangengurken	0,20	411,4	5				Bitertanol (F)	0,01	17,1	0,50	0,50	292	292	_
298	Schlangengurken	0,20	411,4	5				Bromide ion	1	17,1	50,00	50,00	292	292	_
299	Schlangengurken	0,20	411,4	5				Carbofuran (sum of carbofuran and 3-	0,00015	17,1	0,02	0,01	780	390	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD	bw	HG/MRL 2008	(mg/kg) 2013	% A 2008	NRfD 2013	
300	Schlangengurken	0,20	411,4	5				Deltamethrin (cis-deltamethrin) (F)	0,01	17,1	0,20	0,20	117	117	_
301	Schlangengurken	0,20	411,4	5				Fenamiphos (sum of fenamiphos and its	0,0025	17,1	0,05	0,02	117	47	1
302	Schlangengurken	0,20	411,4	5				Fentin acetate (F) (R)	0,001	17,1	0,05	0,05	292	292	_
303	Schlangengurken	0,20	411,4	5				Fentin hydroxide (F) (R)	0,001	17,1	0,05	0,05	292	292	_
304	Schlangengurken	0,20	411,4	5				Fluazifop-P-butyl (fluazifop acid (free	0,01	17,1	0,20	0,20	117	117	_
305	Schlangengurken	0,20	411,4	5				Methomyl and Thiodicarb (sum of	0,0025	17,1	0,05	0,10	117	234	1
306	Schlangengurken	0,20	411,4	5				Oxamyl	0,001	17,1	0,02	0,02	117	117	_
307	Schlangengurken	0,20	411,4	5				Propineb (expressed as	0,1	17,1	2,00	2,00	117	117	_
308	Schlangengurken	0,20	411,4	5				Pyrazophos (F)	0,001	17,1	0,05	0,05	292	292	_
309	Schlangengurken	0,20	411,4	5				Quizalofop, incl. quizalfop-P	0,02	17,1	0,40	0,40	117	117	_
310	Schlangengurken	0,20	411,4	5				Dinocap (sum of dinocap isomers and	0,004	17,1	0,05	0,07	73	102	1
311	Schlangengurken	0,20	411,4	5				Flonicamid (sum of flonicamid, TNFG	0,025	17,1	0,50	0,50	117	117	_
312	Schlangengurken	0,20	411,4	5				Procymidone (R)	0,012	17,1	1,00	0,01	487	5	4
313	Gewürzgurken	0,05	38,3	7				Carbofuran (sum of carbofuran and 3-	0,00015	17,1	0,02	0,01	217	109	1
314	Gewürzgurken	0,05	38,3	7				Formetanate: Sum of formetanate and	0,005	17,1	0,50	0,50	163	163	_
315	Gewürzgurken	0,05	38,3	7				Procymidone (R)	0,012	17,1	1,00	0,01	136	1	1
316	Zucchini	0,10	114,0	7				Bitertanol (F)	0,01	14,5	0,50	0,50	232	232	_
317	Zucchini	0,10	114,0	7				Bromide ion	1	14,5	30,00	30,00	139	139	_
318	Zucchini	0,10	114,0	7				Carbofuran (sum of carbofuran and 3-	0,00015	14,5	0,02	0,01	620	310	1
319	Zucchini	0,10	114,0	7				Fentin acetate (F) (R)	0,001	14,5	0,05	0,05	232	232	_
320	Zucchini	0,10	114,0	7				Fentin hydroxide (F) (R)	0,001	14,5	0,05	0,05	232	232	_
321	Zucchini	0,10	114,0	7				Formetanate: Sum of formetanate and	0,005	14,5	0,50	0,50	465	465	_
322	Zucchini	0,10	114,0	7				Methiocarb (sum of methiocarb and	0,013	14,5	0,50	0,50	179	179	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	1G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
323	Zucchini	0,10	114,0	7				Methomyl and Thiodicarb (sum of		0,0025	14,5	0,05	0,10	93	186	1
324	Zucchini	0,10	114,0	7				Oxamyl		0,001	14,5	0,03	0,03	139	139	_
325	Zucchini	0,10	114,0	7				Pyrazophos (F)		0,001	14,5	0,05	0,05	232	232	_
326	Zucchini	0,10	114,0	7				Procymidone (R)		0,012	14,5	1,00	0,01	387	4	
327	Melonen	0,54	540,0	5	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-		0,00015	17,8	0,02	0,01	202	101	↓
328	Melonen	0,54	540,0	5	0,10		Fruchtfleisch	Dinocap (sum of dinocap isomers and		0,004	17,8	0,05	0,50	19	190	1
329	Melonen	0,54	540,0	5	0,10		Fruchtfleisch	Procymidone (R)		0,012	17,8	1,00	0,01	126	1	1
330	Wassermelonen	0,54	690,0	5	0,10		Fruchtfleisch	Carbofuran (sum of carbofuran and 3-		0,00015	22,0	0,02	0,01	163	82	1
331	Wassermelonen	0,54	690,0	5	0,10		Fruchtfleisch	Procymidone (R)		0,012	22,0	1,00	0,01	102	1	1
332	Chinakohl	0,13	649,0	5				Bromide ion		1	17,1	30,00	30,00	111	111	_
333	Chinakohl	0,13	649,0	5				Carbofuran (sum of carbofuran and 3-		0,00015	17,1	0,02	0,01	495	248	I.
334	Chinakohl	0,13	649,0	5				Deltamethrin (cis-deltamethrin) (F)		0,01	17,1	0,50	0,50	186	186	_
335	Chinakohl	0,13	649,0	5				Fentin acetate (F) (R)		0,001	17,1	0,05	0,05	186	186	_
336	Chinakohl	0,13	649,0	5				Fentin hydroxide (F) (R)		0,001	17,1	0,05	0,05	186	186	_
337	Chinakohl	0,13	649,0	5				Fluazifop-P-butyl (fluazifop acid (free		0,01	17,1	0,50	0,50	186	186	_
338	Chinakohl	0,13	649,0	5				Lambda-Cyhalothrin (F) (R)		0,0075	17,1	1,00	1,00	495	495	_
339	Chinakohl	0,13	649,0	5				Pyrazophos (F)		0,001	17,1	0,05	0,05	186	186	_
340	Chinakohl	0,13	649,0	5				Tebuconazole		0,03	17,1	1,00	1,00	124	124	_
341	Chinakohl	0,13	649,0	5				Thiacloprid (F)		0,03	17,1	1,00	1,00	124	124	_
342	Chinakohl	0,13	649,0	5				Vinclozolin (sum of vinclozolin and all		0,06	17,1	2,00	0,05	124	3	1
343	Feldsalat	0,05		1				Procymidone (R)		0,012	17,8	5,00	0,01	117	0	I.
344	Grüner Salat	0,09	534,7	3				Bifenthrin (F)		0,03	16,2	2,00	2,00	108	108	_
345	Grüner Salat	0,09	534,7	3				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	215	108	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD	bw	HG/MRL (mg bw 2008 20		% ARfD 2008 201		
346	Grüner Salat	0,09	534,7	3				Cyromazine	0,1	16,2	15,00	3,00	242	48	ļ
347	Grüner Salat	0,09	534,7	3				Lambda-Cyhalothrin (F) (R)	0,0075	16,2	0,50	0,50	108	108	_
348	Grüner Salat	0,09	534,7	3				Methiocarb (sum of methiocarb and	0,013	16,2	1,00	1,00	124	124	_
349	Grüner Salat	0,09	534,7	3				Methomyl and Thiodicarb (sum of	0,0025	16,2	0,30	0,20	194	129	1
350	Grüner Salat	0,09	534,7	3				Prochloraz (sum of prochloraz and its	0,025	16,2	5,00	5,00	323	323	_
351	Grüner Salat	0,09	534,7	3				Thiacloprid (F)	0,03	16,2	2,00	2,00	108	108	_
352	Grüner Salat	0,09	534,7	3				Tolylfluanid (Sum of tolylfluanid and	0,25	16,2	20,00	0,02	129	0	40
353	Grüner Salat	0,09	534,7	3				Vinclozolin (sum of vinclozolin and all	0,06	16,2	5,00	0,05	135	1	1
354	Grüner Salat	0,09	534,7	3				Spinetoram (XDE-175)	0,1	16,2	0,05	10,00	1	161	1
355	Grüner Salat	0,09	534,7	3				Procymidone (R)	0,012	16,2	5,00	0,01	673	1	1
356	Kraussalat	0,30	353,4	5				Abamectin (sum of avermectin B1a,	0,005	17,1	0,10	0,10	175	175	_
357	Kraussalat	0,30	353,4	5				Acetamiprid (R)	0,1	17,1	5,00	1,50	437	131	1
358	Kraussalat	0,30	353,4	5				Bifenthrin (F)	0,03	17,1	2,00	2,00	583	583	_
359	Kraussalat	0,30	353,4	5				Bromide ion	1	17,1	50,00	50,00	437	437	_
360	Kraussalat	0,30	353,4	5				Carbofuran (sum of carbofuran and 3-	0,00015	17,1	0,02	0,01	1166	583	1
361	Kraussalat	0,30	353,4	5				Cyfluthrin (cyfluthrin including other	0,02	17,1	1,00	1,00	437	437	_
362	Kraussalat	0,30	353,4	5				Cyromazine	0,1	17,1	15,00	0,05	1311	4	1
363	Kraussalat	0,30	353,4	5				Deltamethrin (cis-deltamethrin) (F)	0,01	17,1	0,50	0,50	437	437	_
364	Kraussalat	0,30	353,4	5				Fentin acetate (F) (R)	0,001	17,1	0,05	0,05	437	437	_
365	Kraussalat	0,30	353,4	5				Fentin hydroxide (F) (R)	0,001	17,1	0,05	0,05	437	437	_
366	Kraussalat	0,30	353,4	5				Fluazifop-P-butyl (fluazifop acid (free	0,01	17,1	0,20	0,20	175	175	_
367	Kraussalat	0,30	353,4	5				Imidacloprid	0,08	17,1	1,00	1,00	109	109	
368	Kraussalat	0,30	353,4	5				Lambda-Cyhalothrin (F) (R)	0,0075	17,1	1,00	1,00	1166	1166	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v** ARfD	bw	1G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
369	Kraussalat	0,30	353,4	5				Methomyl and Thiodicarb (sum of	0,0025	17,1	0,05	0,02	175	70	1
370	Kraussalat	0,30	353,4	5				Oxycarboxin	0,01	17,1	0,50	0,01	437	9	1
371	Kraussalat	0,30	353,4	5				Oxydemeton-methyl (sum of	0,0015	17,1	0,05	0,01	291	58	I.
372	Kraussalat	0,30	353,4	5				Phorate (sum of phorate, its oxygen	0,003	17,1	0,05	0,01	146	29	1
373	Kraussalat	0,30	353,4	5				Prochloraz (sum of prochloraz and its	0,025	17,1	5,00	5,00	1749	1749	
374	Kraussalat	0,30	353,4	5				Pymetrozine	0,1	17,1	2,00	2,00	175	175	_
375	Kraussalat	0,30	353,4	5				Pyrazophos (F)	0,001	17,1	0,05	0,05	437	437	_
376	Kraussalat	0,30	353,4	5				Quizalofop, incl. quizalfop-P	0,02	17,1	0,40	0,40	175	175	_
377	Kraussalat	0,30	353,4	5				Tebuconazole	0,03	17,1	0,05	0,50	15	146	T
378	Kraussalat	0,30	353,4	5				Thiacloprid (F)	0,03	17,1	2,00	2,00	583	583	_
379	Kraussalat	0,30	353,4	5				Tolylfluanid (Sum of tolylfluanid and	0,25	17,1	20,00	0,02	699	1	1
380	Kraussalat	0,30	353,4	5				Vinclozolin (sum of vinclozolin and all	0,06	17,1	5,00	0,05	729	7	1
381	Kraussalat	0,30	353,4	5				Dithiocarbamates (dithiocarbamates	0,2	17,1	5,00	5,00	219	219	_
382	Kraussalat	0,30	353,4	5				Clothianidin	0,1	17,1	0,10	2,00	9	175	1
383	Kraussalat	0,30	353,4	5				Dinocap (sum of dinocap isomers and	0,004	17,1	0,05	0,05	109	109	_
384	Kraussalat	0,30	353,4	5				Procymidone (R)	0,012	17,1	5,00	0,01	3643	7	1
385	Kraussalat	0,30	353,4	5				Indoxacarb (sum of indoxacarb and its	0,125	17,1	2,00	2,00	140	140	_
386	Salatrauke, Rucola	0,05		1				Procymidone (R)	0,012	16,2	5,00	0,01	129	0	1
387	Spinat	0,40		1	1,68		Gekocht	Acetamiprid (R)	0,1	17,8	0,01	4,00	0	152	1
388	Spinat	0,40		1	1,68		Gekocht	Bromide ion	1	17,8	50,00	50,00	190	190	_
389	Spinat	0,40		1	1,68		Gekocht	Carbofuran (sum of carbofuran and 3-	0,00015	17,8	0,02	0,01	506	253	1
390	Spinat	0,40		1	1,68		Gekocht	Deltamethrin (cis-deltamethrin) (F)	0,01	17,8	0,50	0,50	190	190	
391	Spinat	0,40		1	1,68		Gekocht	Dodine	0,1	17,8	10,00	10,00	380	380	_

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	HG/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
392	Spinat	0,40		1	1,68		Gekocht	Fentin acetate (F) (R)		0,001	17,8	0,05	0,05	190	190	_
393	Spinat	0,40		1	1,68		Gekocht	Fentin hydroxide (F) (R)		0,001	17,8	0,05	0,05	190	190	
394	Spinat	0,40		1	1,68		Gekocht	Fluazifop-P-butyl (fluazifop acid (free		0,01	17,8	1,00	1,00	380	380	_
395	Spinat	0,40		1		1,68	3 Gekocht	Lambda-Cyhalothrin (F) (R)		0,0075	17,8	0,50	0,50	253	253	
396	Spinat	0,40		1	1,68		Gekocht	Propamocarb (Sum of propamocarb and	t	1	17,8	30,00	30,00	114	114	_
397	Spinat	0,40		1	1,68		Gekocht	Pyrazophos (F)		0,001	17,8	0,05	0,05	190	190	_
398	Spinat	0,40		1	1,68		Gekocht	Penthiopyrad		0,75	17,8		30,00	0	152	1
399	Spinat	0,40		1	1,68		Gekocht	Folpet (R)		0,2	17,8	10,00	10,00	190	190	_
400	Portulak	0,07	29,5	7				Bifenthrin (F)		0,03	16,2	2,00	2,00	101	101	_
401	Portulak	0,07	29,5	7				Carbaryl (F)		0,01	16,2	3,00	0,01	453	2	1
402	Portulak	0,07	29,5	7				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	201	101	1
403	Portulak	0,07	29,5	7				Lambda-Cyhalothrin (F) (R)		0,0075	16,2	0,50	0,50	101	101	_
404	Portulak	0,07	29,5	7				Prochloraz (sum of prochloraz and its		0,025	16,2	5,00	5,00	302	302	_
405	e) Chicorée	0,23	94,7	7				Bromide ion		1	17,1	50,00	50,00	232	232	_
406	e) Chicorée	0,23	94,7	7				Carbofuran (sum of carbofuran and 3-		0,00015	17,1	0,02	0,01	618	309	140
407	e) Chicorée	0,23	94,7	7				Fentin acetate (F) (R)		0,001	17,1	0,05	0,05	232	232	_
408	e) Chicorée	0,23	94,7	7				Fentin hydroxide (F) (R)		0,001	17,1	0,05	0,05	232	232	_
409	e) Chicorée	0,23	94,7	7				Pyrazophos (F)		0,001	17,1	0,05	0,05	232	232	_
410	e) Chicorée	0,23	94,7	7				Vinclozolin (sum of vinclozolin and all		0,06	17,1	2,00	0,05	155	4	II.
411	e) Chicorée	0,23	94,7	7				Procymidone (R)		0,012	17,1	2,00	0,01	773	4	1
412	Sellerieblätter	0,10		1				Abamectin (sum of avermectin B1a,		0,005	17,8	1,00	1,00	115	115	_
413	Sellerieblätter	0,10		1				Prochloraz (sum of prochloraz and its		0,025	17,8	5,00	5,00	115	115	_
414	Sellerieblätter	0,10		1				Nicotine		0,0008	17,8		0,40	0	287	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

	Lebensmittel*	LP (kg)	U (g)	v	defPF	PF	Erzeugnis	Wirkstoff	v**	ARfD	bw	1G/MRL 2008	(mg/kg) 2013	% A 2008	RfD 2013	
415	Erbsen (ohne	0,07		1				Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,02	0,01	109	55	Î
416	Stangensellerie	0,16	462,0	5				Bromide ion		1	17,1	30,00	30,00	138	138	_
417	Stangensellerie	0,16	462,0	5				Carbofuran (sum of carbofuran and 3-		0,00015	17,1	0,02	0,01	612	306	1
418	Stangensellerie	0,16	462,0	5				Chlorfenvinphos (F)		0,01	17,1	0,50	0,02	230	9	1
419	Stangensellerie	0,16	462,0	5				Difenoconazole		0,2	17,1	5,00	5,00	115	115	
420	Stangensellerie	0,16	462,0	5				Fentin acetate (F) (R)		0,001	17,1	0,05	0,05	230	230	_
421	Stangensellerie	0,16	462,0	5				Fentin hydroxide (F) (R)		0,001	17,1	0,05	0,05	230	230	_
422	Stangensellerie	0,16	462,0	5				Fluazifop-P-butyl (fluazifop acid (free		0,01	17,1	0,50	0,50	230	230	_
423	Stangensellerie	0,16	462,0	5				Imidacloprid		0,08	17,1	2,00	2,00	115	115	_
424	Stangensellerie	0,16	462,0	5				Lambda-Cyhalothrin (F) (R)		0,0075	17,1	0,30	0,30	184	184	-
425	Stangensellerie	0,16	462,0	5				Pirimicarb: sum of pirimicarb and		0,1	17,1	5,00	5,00	230	230	_
426	Stangensellerie	0,16	462,0	5				Pyrazophos (F)		0,001	17,1	0,05	0,05	230	230	_
427	Stangensellerie	0,16	462,0	5				Dimethomorph (sum of isomers)		0,6	17,1	0,05	15,00	0	115	1
428	Stangensellerie	0,16	462,0	5				Chlorothalonil (R)		0,6	17,1	10,00	20,00	77	153	1
429	Fenchel	0,07	286,3	5				Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,02	0,01	271	136	1
430	Fenchel	0,07	286,3	5				Fentin acetate (F) (R)		0,001	16,2	0,05	0,05	102	102	_
431	Fenchel	0,07	286,3	5				Fentin hydroxide (F) (R)		0,001	16,2	0,05	0,05	102	102	_
432	Fenchel	0,07	286,3	5				Fluazifop-P-butyl (fluazifop acid (free		0,01	16,2	0,50	0,50	102	102	_
433	Fenchel	0,07	286,3	5				Pirimicarb: sum of pirimicarb and		0,1	16,2	1,00	5,00	20	102	1
434	Fenchel	0,07	286,3	5				Pyrazophos (F)		0,001	16,2	0,05	0,05	102	102	_
435	Kulturpilze	0,15		1				Carbofuran (sum of carbofuran and 3-		0,00015	17,8	0,02	0,01	113	56	1
436	Kulturpilze	0,15		1				Prochloraz (sum of prochloraz and its		0,025	17,8	2,00	3,00	68	101	1
437	Bohnen	0,16		1	0,47		Gekocht	Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,02	0,01	113	57	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen

LP - large Portion (EFSA Modell)

U - mittleresGewicht/Unit weight (EFSA)

bw - Körpergewicht (EFSA "Vielesser")

											HG/MRL (mg/kg)		% A			
	Lebensmittel*	LP (kg)	U (g)	٧	defPF	PF	Erzeugnis	Wirkstoff	V**	ARfD	bw	2008	2013	2008	2013	
438	Bohnen	0,16		1	0,47		Gekocht	Fluazifop-P-butyl (fluazifop acid (free		0,01	8,7	2,00	2,00	170	170	_
439	Erbsen	0,06		1				Fluazifop-P-butyl (fluazifop acid (free		0,01	14,5	5,00	5,00	210	210	
440	Sesamsamen	0,02		1				Fluazifop-P-butyl (fluazifop acid (free		0,01	16,2	10,00	10,00	145	145	_
441	Sonnenblumenkerne	0,05		1		1,00	Geschält	Carbofuran (sum of carbofuran and 3-		0,00015	16,2	0,10	0,10	205	205	
442	Rapssamen	0,02		1	1,13		ÖI	Fluazifop-P-butyl (fluazifop acid (free		0,01	16,2	15,00	15,00	189	189	_
443	Mais	0,06		1				Deltamethrin (cis-deltamethrin) (F)		0,01	8,7	2,00	2,00	135	135	_
444	Roggen	0,06		1	1,00		Brot	Deltamethrin (cis-deltamethrin) (F)		0,01	8,7	2,00	2,00	126	126	_
445	Weizen	0,30		1		0,42	Brot	Deltamethrin (cis-deltamethrin) (F)		0,01	20,5	2,00	2,00	121	121	
446	Kapern	0,00		1				Nicotine		0,0008	16,2		4,00	0	142	1
447	Zuckerrüben	1,31		1	0,30		Zucker	Carbofuran (sum of carbofuran and 3-		0,00015	20,5	0,20	0,01	2554	128	1
448	Zuckerrüben	1,31		1	0,30		Zucker	Dimethoate (sum of dimethoate and		0,01	20,5	1,00	1,00	192	192	_
449	Zuckerrüben	1,31		1	0,30		Zucker	Methamidophos		0,003	20,5	0,20	0,02	128	13	1
450	Zuckerrüben	1,31		1	0,30		Zucker	Oxydemeton-methyl (sum of		0,0015	20,5	0,10	0,01	128	13	4
451	Zuckerrohr	0,07		1	0,46		Zucker	Carbofuran (sum of carbofuran and 3-		0,00015	8,7	0,10	0,01	247	25	1
452	Ziegen	0,83		1	0,10		Gekocht	Carbofuran (sum of carbofuran and 3-		0,00015	34,5	0,10	0,01	161	16	1

^{*}Sortiert nach EU Code

ARfD in mg/kg Körpergewicht (bw)

defPF - Verarbeitungsfaktor Default oder Mittelwert nach BfR 2010

PF = spezifischer Verarbeitungsfaktor nach BfR 2010

v** - abweichende Variabilitätsfaktoren für bestimmte Lebensmittel/Wirkstoffkombinationen